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ABSTRACT  17 

High-density single nucleotide polymorphisms (SNP) panels are expensive, especially in 18 

developing countries, but methods have been developed to detect critical SNPs from these panels 19 

and design low-density chips for genomic evaluation at lower cost. This study aimed to determine 20 

the efficiency of random forest (RF) and gradient boosting machine (GBM) algorithms, and Linear 21 

Model (LM) in identification of SNPs subsets to predict genomic estimated breeding values 22 

(GEBVs) for body weights at 6 (BW6) and 9 (BW9) weeks in broiler chickens and compare the 23 

predicted GEBVs with those obtained by the 60k SNP panel. The data were collected on 312 F2 24 

chickens that genotyped with 60K Illumina SNP BeadChip. After applying quality control, the 25 

remaining 45,512 SNPs were ranked based on p-values, mean square error percentage, and relative 26 

influence, obtained by LM, RF and GBM methods, respectively. Then subsets of top 400, 1000, 27 

3000 and 5000 SNPs, selected by each method, employed to construct genomic relationship 28 

matrices for the prediction of GEBVs with genomic best linear unbiased prediction model. Results 29 
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indicated that predicted accuracies by RF and GBM were generally higher than LM. A Subset of 30 

1000 SNPs selected by RF and GBM algorithms compared to the total SNPs increased accuracy 31 

from 0.38 to 0.64 and 0.66 for BW6, and from 0.42 to 0.60 and 0.66 for BW9, respectively. The 32 

findings of the present study provide that machine learning methods, especially GBM, can perform 33 

better than LM in selecting important SNPs and increase the accuracy of genomic prediction in 34 

broiler chickens.   35 

Keywords: genomic evaluation, body weight, broilers, machine learning. 36 

 37 

INTRODUCTION 38 

Single nucleotide polymorphisms (SNPs) have been widely utilized in biological research, cancer 39 

research, parentage testing, mapping of quantitative trait loci, and evaluation of genomic selection 40 

due to their effectiveness as genetic markers. High-density (HD) SNP panels are now accessible 41 

for many species due to advancements in high-throughput sequencing technology (Unterseer et al., 42 

2014). One of the important factors in using high-density SNPs is the cost, which is a big limiting 43 

factor in utilizing it, especially in developing countries (Mrode et al., 2018). High-density SNP 44 

panels used for genomic evaluations have a large number of SNPs that have little to no effect on 45 

the traits and could decrease prediction accuracy (Ye et al., 2019). Therefore, various strategies 46 

have been performed to select SNPs with large effect from high-density SNP chips, such as 47 

selecting SNP evenly spaced across the genome (Habier et al ., 2009) and based on allelic frequency 48 

(Abdollahi et al., 2014).  49 

It has been reported that detected subset of SNPs through conventional genome-wide association 50 

study (GWAS) increased the accuracy of genomic selection (Liu et al., 2020). On the contrary, Lu 51 

et al. (2020) indicated that pre-selecting SNPs based on estimates of variance contributed using 52 

weighted single-step genomic best linear unbiased prediction (ssGBLUP) or p-values using single-53 

SNP GWAS did not increase accuracy of genomic predictions substantially in Japanese flounders. 54 

In conventional GWAS, a univariate phenotype is regressed on each SNP independently, due to 55 

small number of observations and large number of SNPs and LD between SNPs is not considered. 56 

Since SNPs are often correlated via linkage disequilibrium (LD), the most significant individual 57 

SNPs selected by linear regression may not be an optimal set for creating low-density chips. The 58 

undesirable statistical properties of the least squares prediction method for selection of SNPs has 59 

also been proposed by Wray et al. (2013).  60 
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Machine learning (ML) techniques have been used in GWASs (Mokry et al., 2013). In the context 61 

of genome-enabled prediction of phenotypes, ML classification procedure was used by Long et al. 62 

(2007) in selection of SNPs for prediction of mortality traits in poultry. Random Forest (RF) 63 

(Breiman, 2001) has been applied to GWASs to identify SNP associated with phenotypes and to 64 

map QTL on the genomic regions (Minozzi et al., 2014). Gradient Boosting Machine (GBM) 65 

(Friedman, 2001) is another popular method of ML algorithm that has gained attention recently. 66 

Piles et al. (2021) showed that compared to parametric methods, the best prediction quality in terms 67 

of accuracy and stability was obtained with the GBM method for selecting SNPs in order to create 68 

low-density SNP chips. The RF and GBM algorithms are suitable alternative to other methods used 69 

for genomic evaluations at the expense of lower interpretability of results (González-Recio et al., 70 

2010) and are the most appealing alternatives to analyze complex traits using dense genomic 71 

markers information (González-Recio and Forni, 2011). 72 

Several ML algorithms have been used to detect subsets of important SNPs from high-density SNP 73 

chips in pig breeds (Schiavo et al., 2020), tropical Brahman cattle (Li et al., 2018) and purebred 74 

and commercial Korean native chickens (Seo et al., 2021). Different results have been reported in 75 

these studies either in the size of subsets of SNPs or in the outcomes of the methods. To best of our 76 

knowledge this approach has not been demonstrated in broiler chickens yet and will serve poultry 77 

industry with better insight on utilization of ML techniques in preselection of SNPs to enhance the 78 

accuracy of genomic selection. Therefore, the present study aimed to evaluate the efficiency of two 79 

ML algorithms, namely RF and GBM, in identifying a subset of SNPs affecting growth traits using 80 

a crossbreed chicken population for the genomic selection purpose. The accuracy of genomic 81 

breeding values predicted by subsets of SNPs selected by ML algorithms were compared with 82 

conventional GWAS and all available SNP set.  83 

 84 

MATERIALS AND METHODS 85 

 Experimental population, phenotypic and genotypic data 86 

A population of F2 crosses between the fast-growing Arian line (AA) and the slow-growing Urmia 87 

Iranian indigenous chickens (NN) was used in this study. The F1 birds were generated from the 88 

mating of AA ♂ × NN ♀ and NN ♂ × AA ♀ birds and reared for 12 weeks in poultry research 89 

farm of Tarbiat Modares University, Tehran, Iran. Then F1 males from each reciprocal cross were 90 

mated each to 4–8 females from other families and F2 chickens were produced. Chickens of F2 91 

generation were raised individually in cages equipped with water nipples and feeders for 12 weeks 92 
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under the same environmental conditions and ration. Individual weekly weight was collected 93 

throughout the growing period. A total of 312 birds from six different hatches were available. For 94 

the present study, body weights recorded at 6 (BW6) and 9 (BW9) weeks were used. More 95 

information about these traits can be found in Emrani et al. (2017). Before implication of ML, a 96 

multiple linear regression of observations on sex and hatch was used to adjust the body weight data 97 

(Brown and Reverter, 2002). 98 

Genomic DNA was extracted from 312 blood samples using salting out method and stored at -99 

20°C. After extraction, spectrophotometry and agarose gel electrophoresis methods were used to 100 

determine the quantity and quality of DNA. These DNA samples were genotyped with the Illumina 101 

Chicken 60K SNP BeadChip, in cooperation with Cobb-Vantress Inc., and the Aarhus University, 102 

Denmark. Quality control steps were applied to the original data with PLINK 1.9 software (Purcell 103 

et al., 2007). SNPs with call rate of <95%, minor allele frequency of <5%, a Hardy– Weinberg 104 

equilibrium test p-value <1× 10-6 were deleted (Emrani et al., 2017). After quality control, 45512 105 

of SNPs for twenty-eight autosome chromosomes and 300 birds remained for final analysis.  106 

 107 

Methods for selecting markers 108 

The linear model for conventional GWAS was as follows: 109 

𝐲 = 𝟏𝛍 + 𝐙𝐪 + 𝐞 110 

where 𝐲 is the vector of corrected phenotypic values for BW6 and BW9, 𝟏 is an n-vector of ones, 111 

𝛍 is the population mean, 𝐪 is the effect of the marker in the model, which is treated as a fixed 112 

regression of observation on genotype, 𝐙 is a vector containing genotypes of the marker with 0, 1 113 

and 2 for A1A1, A1A2 and A2A2, respectively, and 𝐞 is a vector of random residual effects, assuming 114 

𝐞~N(0, 𝐈σe
2), where  σe

2 is the residual variance and I is the identity matrix. The genetic association 115 

tests were conducted using the '--Linear’ command in PLINK v1.9 (Purcell et al., 2007). The SNPs 116 

were selected based on the p-values from GWAS results. 117 

In the RF algorithm, which contains several decision trees, a bootstrap sample of original training 118 

data is used to grow each tree. The RF algorithm predicts the outcome by averaging the outputs 119 

obtained from all the trees in the forest (Breiman, 2001). When making bootstrap samples to grow 120 

each tree, approximately 34 percent of records will not be selected, which is called Out Of Bag 121 

(OOB) records. To calculate importance of each SNP, OOB error was calculated by predicting the 122 

outcome of OOB samples via the corresponding tree. Then the values of each predictor were 123 
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permuted (shuffled) and prediction error of OOB samples were calculated again. The mean square 124 

error percentage (MSEP) difference between permuted and non-permuted samples (averaged over 125 

all the trees in the forest) indicated the importance or predictive ability of that particular predictor. 126 

The ‘randomForest’ package was used to perform this analysis in R software (Breiman, 2013). 127 

In the GBM algorithm, the basic functions are weak learners such as a decision trees. The purpose 128 

of the Boosting algorithm is to enhance ensemble of weak learners into a strong learner. In this 129 

method, a basic learner such as a decision trees are added sequentially to the residuals of the 130 

previous tree, and it is expected that by focusing on the incorrectly predicted data in the previous 131 

tree, error rate in the next tree will be lessened and as long as the error rate is decreasing, the 132 

boosting algorithm will continue (Friedman, 2001). In the present study, important markers in the 133 

GBM method are identified by relative influence (RI), which is the average of reduction in MSEP 134 

over all the trees when that particular SNP to split the data (Friedman, 2001). The ‘gbm’ package 135 

was used to perform this algorithm in R software (Greenwell et al., 2019). For GBM and RF 136 

methods, hyper-parameters tuning performed via nested grid search within a 3-fold cross-137 

validation on the 75 percent randomly selected subset of the data. 138 

 139 

Genome-wide screening for top ranking SNPs 140 

All SNPs were ranked from the most important to the least important SNP by criteria values of RF 141 

(increase in MSEP), GBM (RI), and LM (p-value) using ‘dplyr’ package implemented in R 142 

(Wickham et al., 2023). For the 5000 number of important SNPs, obtained from LM, RF and GBM, 143 

venn diagrams were drawn by the ‘VennDiagram’ package (Chen and Boutros, 2011). Top 400, 144 

1,000, 3000, and 5000 SNPs with the above-mentioned criteria were used to create genomic 145 

relationship matrices. 146 

 147 

Genomic estimated breeding value  148 

Genomic estimated breeding values (GEBV) were derived using genomic best linear unbiased 149 

prediction (GBLUP) model. The statistical model of GBLUP is written as follows (Gianola et al., 150 

2006): 151 

𝐲 = 𝟏𝛍 + 𝐠 + 𝐞 152 

where 𝐲 is an n-vector of corrected phenotypes, 1 is an n-vector of ones, 𝛍 is the population mean, 153 

𝐠 is a vector of random additive genomic values with 𝐠~N(0, 𝐆σg
2, where 𝐆 is the additive genomic 154 

 [
 D

ow
nl

oa
de

d 
fr

om
 ja

st
.m

od
ar

es
.a

c.
ir

 o
n 

20
24

-0
5-

08
 ]

 

                             5 / 21

https://jast.modares.ac.ir/article-23-69370-en.html


relationship matrix between genotyped individuals and σg
2 is the additive genomic variance, and 𝐞 155 

is the vector of random residual effects with 𝐞~N(0, 𝐈σe
2),, where σe

2 is the residual variance, and 156 

𝐈 is the identity matrix. The additive genomic relationship matrix (𝐆) is constructed as 
𝐙𝐙՛

𝐦
, where 157 

𝐙 is the matrix of centered and standardized genotypes for all individuals and m is the number of 158 

markers. Kernel Hilbert space regression method was used to implement the GBLUP approach and 159 

the genomic heritability in the selected subsets and all markers was estimated using the Bayesian 160 

Generalized Linear Regression (BGLR) package (Pérez-Rodríguez and de Los Campos, 2022) in 161 

R software. The Gibbs sampler was run for 50,000 iterations, with a 10,000 burn-in period and a 162 

thinning interval of 5 iterations, i.e., 10,000 samples were used for inference. 163 

 164 

Cross-validation for the accuracy of genomic breeding values 165 

Accuracy of genomic prediction was calculated on 5-fold cross-validation base as follows (Li et 166 

al., 2018):  167 

Accuracy = 
rGEBV,phen

√h2
  168 

Where rGEBV,phen is correlation coefficient between the predicted GEBVs of the birds in the test 169 

fold and the corrected phenotypes (phen) and h2 is estimated heritability of the trait. 170 

Unbiasedness of genomic prediction was calculated on 5-fold cross-validation base as follows: 171 

b GEBV,phen = rGEBV,phen(Sphen/SGEBV) 172 

Where bEBV,phen  is regression coefficient of corrected phenotypes on GEBV that show 173 

unbiasedness of the GEBV, rGEBV,phen is correlation coefficient between the predicted GEBVs of 174 

the birds in the test fold and the corrected phenotypes, Sphen  is the standard deviation of corrected 175 

phenotypes and SGEBV  is the standard deviation of predicted GEBVs. Finally, the Tukey HSD 176 

(Honestly Significant Difference) test was used to compare the significant differences between the 177 

best subsets of SNPs which had the highest increase in genomic prediction accuracy with each 178 

other and the all SNPs.  179 

 180 

RESULTS AND DISCUSSION 181 

The rank of SNPs from the most important to the least important for BW6 and BW9 are shown in 182 

Figure 1. Based on LM method, the 5000 pre-selected SNPs had a p-values range from 1.01 × 10−5 183 

to 7.60 × 10−2 and 7.57 × 10−6 to 8.09 × 10−2 for BW6 and BW9, respectively. For RF method, 184 
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the importance of SNPs changes from positive to negative values. The highest positive value in RF 185 

indicates an increase in the MSEP when the SNP is randomly permuted compared to the prediction 186 

error before SNP permutation. In this model, 47%, 7%, and 46% of SNPs for BW6 and 47%, 9% 187 

and 44% of SNPs for BW9 had positive, zero, and negative effects, respectively. About 5% of 188 

SNPs for BW6 and 2.8% for BW9 (5000 pre-selected SNPs) had a MSEP increase more than 0.2, 189 

respectively. In the GBM method, 26% and 16% of SNPs had larger than zero effect for BW6 and 190 

BW9, respectively.  In 5000 pre-selected SNPs with GBM method, none of the SNPs had a zero 191 

RI, however, 65.3% of SNPs for BW6 had a RI less than one and close to zero. For BW9, the 192 

amount of RI for last SNP of the 5000 pre-selected SNPs was 58.10%, and 52.52% of SNPs had a 193 

RI less than 1000.  Based on this method, about 3.62% of SNPs for BW6 and 5.06% for BW9 194 

(5000 pre-selected SNPs) had a RI more than 10000, respectively.  195 

The total number of common SNPs between three methods are shown visually by Venn diagrams 196 

in Figure 2 for the top 5000 SNPs.  A total of 924 and 1100 SNPs was common across three 197 

methods for BW6 and BW9, respectively. The results indicated that the similarity between RF and 198 

GBM method was higher than that observed between LM with RF and GBM. The estimates of 199 

genomic heritability for body weight traits using the genomic relationships matrix consisting of all 200 

or subsets of selected SNPs for three methods are presented in Figure 3. Genomic heritability for 201 

BW6 and BW9 consisting of all SNPs was estimated to be 0.28 and 0.30, respectively. These 202 

estimates were consistent with the studies of Demeure et al. (2013) and Abdollahi et al. (2014), 203 

who fitted all SNPs and reported a moderate estimates of 0.22 and 0.30, respectively, for growth 204 

traits in chickens. Genomic heritability estimation was increased when the matrix of genomic 205 

relationships was constructed by subsets of SNPs pre-selected by any of the three proposed 206 

methods in the present study. Pre-selected subsets of SNPs by GBM showed the highest rate of 207 

increase in genomic heritability in comparison with LM and RF. 208 

The highest estimates of heritability for BW6 with pre-selected SNPs by LM, RF, and GBM 209 

methods were, 0.42, 0.39 and 0.48, respectively, in subsets of 5000 SNPs  (in LM) and 1000 SNPs 210 

(in RF and GBM). For BW9, the highest heritability was 0.43, 0.46 and 0.58 in subsets of 5000 211 

SNPs (in LM), 1000 SNPs (in RF) and 3000 SNPs (in GBM), respectively. In comparison to all 212 

45,512 SNPs, the heritability estimates were increased from 0.28 to 0.35 and from 0.30 to 0.46 213 

through preselection of 5000 SNPs using LM model for BW6 and BW9, respectively. By using 214 

1000 pre-selected SNPs, the increases in the heritability estimates were ranged from 0.28 to 0.37 215 
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for BW6 and 0.30 to 0.43 for BW9 with RF model and from 0.28 to 0.48 for BW6 and 0.30 to 0.54 216 

for BW9 with GBM model. Ren et al. (2022) indicated that high-density SNP data provide more 217 

information for genomic evaluation compared to medium-density SNP data but they do not confer 218 

any advantage for heritability estimation. Literature studies reported that the estimates of genomic 219 

heritability were very sensitive to differences in LD between SNPs, suggesting that genomic 220 

heritability is overestimated in region with high LD and underestimated in region with low LD 221 

(Speed et al., 2012). The stronger LD of the remaining SNPs and the removal of the imperfect LD 222 

between the causal mutations may improve the genomic relationships between individuals and 223 

increase the heritability of the trait (Abdollahi et al., 2014; Ye et al., 2019). Abdollahi et al. (2014) 224 

estimated genomic heritability for body weight at 6 weeks in broilers chickens using the genomic 225 

relationship matrix consisting of all SNPs and a subset of selected SNPs and reported that the 226 

genomic heritability with selected SNP (0.59) is expected to be overestimated in comparison to all 227 

SNPs (0.30), however, the subsets of SNPs could increase the GEBV accuracy. The increase in the 228 

accuracy of GEBV has been reported by Luo et al, (2021) who proposed a strategy for genomic 229 

selection in aquaculture using a subset of markers selected by the p-value of GWAS and indicated 230 

that the prediction accuracy of a subset of top SNPs was higher than using total SNPs. Li et al. 231 

(2018) reported that ML methods can consider complex and nonlinear relationships. Therefore, 232 

they can produce a smaller error variance and increase genetic variance and heritability. These 233 

authors estimated the heritability of a subset of 3000 SNPs with GBM method to be higher than all 234 

of 38082 SNPs for body weight in Brahman cattle.  235 

Figure 4 and Figure 5 show the mean accuracy and regression coefficient (as a measurement of 236 

unbiasedness) of genomic breeding value for BW6 and BW9 traits using SNP subsets in a 5-fold 237 

cross-validation scheme, respectively. Accuracy of genomic prediction for BW6 and BW9 using 238 

all SNPs was estimated to be 0.38 and 0.42, respectively, which was lower than the genomic 239 

prediction accuracy obtained from the subsets of selected SNPs (400, 1000, 3000 and 5000 selected 240 

with three methods). Average accuracy of genomic breeding value (± standard error) with top 400, 241 

1000, 3000, and 5000 SNP subsets selected by LM, RF and GBM methods were estimated to be 242 

0.56 (± 0.02), 0.61 (± 0.04), 0.52 (± 0.02) and 0.47 (± 0.02) for BW6, and 0.58 (±0.02), 0.61 243 

(±0.02), 0.55 (±0.02) and 0.51 (±0.01) for BW9, respectively. Mean regression coefficient of 244 

genomic prediction on phenotype using total SNPs for BW6 and BW9 were estimated to be 0.76 245 

and 0.90, respectively. With top 400, 1000, 3000, and 5000 SNP subsets selected by three methods, 246 
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mean regression coefficient (± standard error) were 0.94 (± 0.05), 0.97 (± 0.04), 0.94 (± 0.02) and 247 

0.95 (± 0.01) for BW6, and 1.06 (± 0.01), 1.03 (± 0.02), 1.05 (± 0.04) and 1.06 (± 0.05) for BW9, 248 

respectively. The best average accuracy of genomic breeding value and regression coefficient 249 

provided by 1000 SNP subset was 0.61 (± 0.04) and 0.97 (± 0.04) for BW6 and 0.61 (±0.02) and 250 

1.03 (± 0.02) for BW9, respectively. In the study of Liu et al. (2020), the highest accuracy of 251 

genomic breeding value by a subset of 817 SNPs selected from high-density SNP panels was 0.60 252 

for body weight at the age of 12 weeks and by a subset of 354 SNPs was 0.45 for feed conversion 253 

ratio in broiler. Furthermore, several studies indicated a direct relationship between effective 254 

population size and the accuracy of GEBVs. The significant impact of smaller effective population 255 

size on the prediction accuracy of GBLUP has been revealed by Daetwyler et al. (2010), which is 256 

a reflection of strong linkage disequilibrium between variants due to close genetic relatedness 257 

between individuals (Jang et al., 2023; Calus et al., 2008).  258 

Significant differences between genomic prediction accuracy of the best subsets of SNPs (which 259 

had the highest increase in genomic prediction accuracy) with each other and all SNPs are 260 

presented in Table 1. The results showed that 1000 SNPs selected by ML algorithms was the best 261 

pre-selected SNPs for estimating genomic breeding value in broiler chickens for body weight traits 262 

in the present study. In BW6, there was no significant difference between RF and GBM algorithms 263 

in the best subsets (1000 SNPs) of selected SNPs, and they were superior to linear model with the 264 

best subset (3000 SNPs). However, in BW9, GBM was superior to other methods. These findings 265 

are consistent with the results of Kriaridou et al. (2020), who used different subsets of SNPs in four 266 

aquaculture datasets, ranging from 100 to 9000 SNPs, and observed that SNP densities between 267 

1000 and 2000 SNPs had a very similar accuracy of genomic evaluation to high-density 268 

genotyping. Ye et al. (2019) used selected markers from whole-genome sequencing data based on 269 

the p-value obtained from GWAS and showed that the use of pre-selected markers for most traits 270 

did not increase the genomic prediction accuracy in broilers and even increased the bias. One of 271 

the possible reasons is the difficulty of discovering causative variants using GWAS due to the large 272 

number of variants (600k) and high LD between variants. On the contrary, Li et al. (2018) indicated 273 

an increase in the accuracy of genomic prediction by selecting a subset of significant SNPs from 274 

high-density SNP panel (651,253) using RF method.  One of the advantages of ML method is its 275 

ability to analyze data with a high dimension, however, factors such as linkage disequilibrium and 276 

minor allele frequency can affect the performance of ML algorithms for selecting important 277 
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markers (Zhou and Troyanskaya, 2015). Decision trees are known to have low bias and high 278 

variance in prediction, but RF overcomes this issue by forming many trees on each bootstrap 279 

sample, to minimize prediction errors by lowering the variance of prediction. In the GBM, both 280 

bias and variance are expected to be reduced due to the boosting process which is the assembling 281 

multiple weak learners sequentially and using the weighted average of each tree for prediction (Li 282 

et al., 2018). Hence ML can be superior to linear models for selecting SNPs from high-density SNP 283 

panels.  284 

Literature results on improving accurate prediction of breeding values using high-density SNP 285 

genotype, even with implementation of a specific model, are inconsistent. Several studies indicated 286 

that selecting markers from high-density genomic data can be resulted in a small improvement in 287 

genomic accuracy (Lopez et al., 2020). Our strategy for screening SNPs in two growth traits 288 

improved estimation of genomic breeding value accuracies. A Subset of 1000 SNPs selected by 289 

the RF and GBM methods compared to the total SNPs increased the accuracy of genomic 290 

prediction from 0.38 to 0.64 and 0.66 for BW6 and from 0.42 to 0.60 and 0.66 for BW9, 291 

respectively. Liu et al. (2020) improved genomic prediction accuracy for body weight traits in 292 

broiler chickens by selecting a subsets of SNPs based on p-values obtained from GWAS, revealing 293 

that high prediction accuracy for growth traits may be achieved even with a small number of 294 

markers. SNPs that are not close to causal mutations may have a negative impact on genomic 295 

prediction. Also, many SNPs may not tag any causative mutations when the number of markers is 296 

too large. Therefore, if only effective SNPs that tag any causative mutations are included in the 297 

model, the ability of the model to predict genomic breeding value may be increased and the model 298 

error is decreased by removing the unrelated markers. Druet et al. (2014) showed that the accuracy 299 

of genomic prediction depends largely on the coverage of key genes affecting target traits by 300 

genotyping platforms. 301 

 302 

CONCLUSIONS 303 

The genomic selection has become one of the main techniques for animal breeding programs. High 304 

costs of genotyping has limited the use of genomic selection in poultry due to the large number of 305 

selection candidate, especially in developing countries. Therefore, selecting effective SNPs is 306 

useful in designing low-density panels which could provide broad potential and applicability in 307 

genomic evaluation. In the present study, the accuracy of GEBV for BW6 and BW9 obtained from 308 

a subset of pre-selected 1000 SNPs by RF and GBM performed better than the subset selected by 309 
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LM, indicating that ML algorithms can be used as a selection tools to find significant markers for 310 

designing and developing low-density SNP marker panels. However, due to the small population 311 

size of the current study, further studies with more data, different methods and a wide range of 312 

different SNP subsets are needed to find optimum and reliable set of subsets. 313 

 314 
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 416 

Figure 1. The distribution of ranked SNP for BW6 and BW9 from LM, RF and GBM methods. 417 
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 418 

 419 

Figure 2. Venn diagram showing the 5000 number of important SNPs from RF, GBM, and LM methods. Circle 420 
represents the number of identified SNPs and the intersection areas represent the number of overlapping SNPs. 421 
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 430 

Figure 3. Genomic heritability of different subsets of SNPs for BW6 and BW9 from LM, RF and GBM methods. 431 
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 433 

 434 

 435 

BW6 

BW9 

Figure 4. Accuracy of genomic prediction of different subsets of SNPs using a 5-fold cross-validation approach for BW6 and BW9 

from LM, RF and GBM methods. 
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 436 

 437 

 438 

 439 

 440 

BW6 

BW9 

Figure 5. Unbiasedness of genomic prediction by different subsets of SNPs using a 5-fold cross-validation approach for BW6 and 

BW9 from LM, RF and GBM methods. 
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 455 

 456 

 

Table1  

The Tukey HSD test for Accuracy of genomic prediction for body weights using pre-selected  

markers with the best subsets of SNPs. 

Method BW6  BW9 

All SNP 0.38a  0.42a 

LM1000 0.53b  0.59b 

LM3000 0.57c  0.58bc 

RF400 0.58c  0.56c 

RF1000 0.64d  0.60b 

GBM400 0.59c  0.62d 

GBM1000 0.66d  0.66e 

BW6 = 6 weeks body weight; BW9 = 9 weeks body weight; LM = Linear Model; RF = Random Forests; GBM = 

Gradient Boosting Machine. 
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 457های تاثیرگذار برای ارزیابی ژنومی صفات رشد در جوجه های  SNPهای یادگیری ماشین در شناسایی الگوریتمکاربرد 

2F 458 

 459 فرشاهین الحاحسانی و ص لیرضامسعودی، ع لی اکبرآذر، عمنافی ادرواعظ ترشیزی، ق سولسعادت، ربانی حسین

 460 

 461 چکیده

 462امدابااهافند،اهزین اخصتو ا  اکوتو هدیا  لدتاروس  اباید ااب بداچگدل ابدلااا(SNP)نوکیئوریدیارکهدیاچندهتلی اهدیااستفاد اا ارااهت اا

 463هدیابداچگدل اکماباایاا  یدب اژنوم ابداهزین اکمفااروس  ایدفف اواطاال ارااه هدارااه هدیاردثیاگذا اا اایناSNPهدی اباایاهندسدی ا وش

 464  اا (LM) وامدتاخط  (GBM) گاا یدنابوستتفین (،اRF ا)هدیاجنگلارصتتد فکد آی االگو یفمر یینا،الدضتتااهدفاا امطدل  استت  ا

 465ا9(اواBW6)ا0(ااو نابدناا  اسناGEBVsهدیااصلال ا)ا  شبین اباایاپیشا K06ا ا ایکارااه اهدSNPاهدیهندسدی ا یامجموع 

(BW9 اهافگ اجوج)هدیاگوهتف اوامادیات اااGEBVsاهدابداکل یاامجموع ا اپیشابین اهتد اااSNPرااهت ااهدیاK06466هدیا ا  اس  اا 

 467بدقیمدند اهدیاSNPا25513ژنوریپاهتتدند اپااا ااعمدتاکنفاتاکیای ،ار یینااییومینداا60Kرااهتت اابدا آو یاهتتدجمع 2F جوج اا213

 468(اوارأثیااناتت  اincrease in mean square error percentageمیدنگینا)ای(،اافزایشا  صتتداخطدp-values)p ابااستتدماماد یا

(relative influenceا  469،ا266هدی اا امجموع بندیاهتتتدند استتت اا یا ر  اGBMوااRF،اLMهدیاآمد اب اراریباا ا وش ستتت ب (

 470بدا وشااGEBVsبین اابطاژنوم اباایاپیشوهدیا مدرایاایجد اب ا ستتت اآمد اا اهاا وشااباایاابارااSNPا5666واا2666،ا1666

 471ب اطو اکی ااGBMوااRFبین اهد اروسطاهدیاپیشGEBVاسفاد  اهدند انفدیجانودنا ا اک ا ق اابین اندا یباخط اژنوم اپیش بهفاین

 472هد،ا ق اSNP  امادیا ابداکلااGBMوااRFهدیاانفخدباهتد اروستطاالگو یفماااSNPا1666ایاا امدتاخط ابو  ا یاامجموع ا ابیوتفااا

GEBVباایاا00/6واا02/6ب اا23/6هتدا ااب اراریباا ااBW6باایاا00/6واا06/6ب اا23/6واا ااBW9473هدیامطدل  اافزایشا ا  ایدفف ا 

 474هدیامهماعملاکننداواSNPروانندابهفااا ا وشاخط ام مول ا  اانفخدبا،ام GBMویژ این،اب هدیاید گیایامدهک ا وشا ا لدضتاانوتدنااا

 475 هدیاگوهف اافزایشا هند بین اژنوم ا اا  اجوج  ق اپیش

 476ا

 477 
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